CO2 electroreduction on bimetallic Pd–In nanoparticles
نویسندگان
چکیده
منابع مشابه
Tuning CO2 electroreduction efficiency at Pd shells on Au nanocores.
The faradaic efficiency of CO2 electroreduction is significantly affected by the thickness of Pd nanoshells on Au cores. The ratio of hydrogen evolution to CO2 reduction was determined by differential electrochemical mass spectrometry. Decreasing the Pd shell thickness from 10 to 1 nm leads to a twofold increase in faradaic efficiency.
متن کاملBiofunctionalized conductive polymers enable efficient CO2 electroreduction
Selective electrocatalysts are urgently needed for carbon dioxide (CO2) reduction to replace fossil fuels with renewable fuels, thereby closing the carbon cycle. To date, noble metals have achieved the best performance in energy yield and faradaic efficiency and have recently reached impressive electrical-to-chemical power conversion efficiencies. However, the scarcity of precious metals makes ...
متن کاملSegregation in bimetallic nanoparticles.
Bimetallic nanoparticles are of interest due to their physical and chemical properties, which differ from their monometallic counterparts, and are dependent on size, composition and structure. Their unique chemical and physical properties make them useful in many optical, electronic and catalytic applications. In this perspective article we discuss segregation in bimetallic nanoparticles and hi...
متن کاملBiosensors Incorporating Bimetallic Nanoparticles
This article presents a review of electrochemical bio-sensing for target analytes based on the use of electrocatalytic bimetallic nanoparticles (NPs), which can improve both the sensitivity and selectivity of biosensors. The review moves quickly from an introduction to the field of bio-sensing, to the importance of biosensors in today's society, the nature of the electrochemical methods employe...
متن کاملThe Electroreduction of Carbon Dioxide on Porous Copper Nanoparticles
Copper nanoparticles of porous, controlled structure were synthesized using the sacrificial support method (SSM). The precursor weight percent (wt%) of copper (Cu) and fumed silica (EH-5) was varied to determine the optimum ratio for this material. The precursors were reduced at i) 350°C in a 7% H2 atmosphere and ii) at 250°C in a 100% H2 atmosphere. The specific surface areas of the nanopartic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Catalysis Science & Technology
سال: 2020
ISSN: 2044-4753,2044-4761
DOI: 10.1039/d0cy00831a